

Resinex[™] A-7 MB

Strong base anion exchange resin

ResinexTM A-7 MB is a premium grade strongly basic gel-type anion exchange resin type 1. The high cross-linked polystyrene-divinylbenzene matrix provides an outstanding resistance to physical breakdown and oxidation. The high capacity achieved in demineralisation and the low silica leakage makes it suitable for high demanding water treatment applications.

The selected bead distribution of ResinexTM A-7 MB is especially adapted for mixed-bed systems and ensures an excellent separation while backwashing.

Typical Properties

Туре	Crosslinked polystyrene divinylbenzene
Form	gel-type, white, spherical beads
Functional group	Quarternary Ammonium, Type 1
Whole bead count	95% min.
lonic form, as shipped	Cl
Bead size	0.40 - 0.90 mm
Uniformity coefficient	1.60 max.
Bulk density, as shipped	700 kg/m³
Real density	1.08 g/cm ³
Water retention	42 - 48%
Total capacity (Cl ⁻ form)	1.40 eq/l min.
Volume change Cl ⁻ -> OH ⁻	25% max.
Operating temperature, recommended	60°C max.
Stability, pH	0 - 14

Standard Design Conditions

Bed depth	> 750 mm
Service flow rate	8 - 40 BV/h
Backwash expansion	50 - 75%

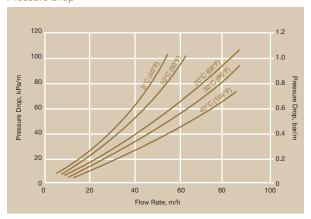
Key Features and Benefits

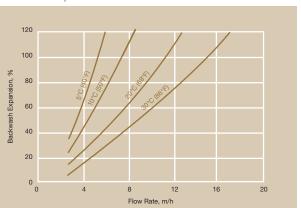
- High Integrity Beads
 Excellent resistance to mechanical degradation ensures low pressure drop
- Low Silica Leakage
- Extended operating capacity Economical advantage
- Resistance To Osmotic Shock
 Extended lifetime and very low number of broken beads
- High Crosslinked Improved chemical and mechanical stability

Typical Applications

- Mixed-bed systems in industrial water treatment applications together with Resinex™ K-10 MB
- Condensate treatment in combination with Resinex™ K-10 MB

Standard Packaging


- 25 lit. PE valve bag
- 1000 litre big bag



Resinex™ A-7 MB Strong base anion exchange resin

Pressure Drop

Backwash Expansion

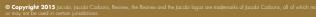
Standard Regeneration Parameters Counter-Flow Co-Flow

Concentration	4% NaOH	2-4 % NaOH
Level	70-100 g/l	50-80 g/l
Flow rate regenerant	4-6 BV/h	6-8 BV/h
Contact time regenerant	30-60 min.	20-40 min.
Flow rate slow rinse	4-6 BV/h	6-8 BV/h
Slow rinse water required	2-4 BV	2 BV
Flow rate fast rinse	10-30 BV/h	10-30 BV/h
Fast rinse water required	6-10 BV	6-10 BV

The use of a weak base solution such as ammonia or sodium carbonate as a regenerant is an alternative to caustic soda. Please contact your nearest Jacobi Carbons sales office for further information.

Product Packing

25 lit. polyethylene valve bag 48 bags per pallet



Polypropylene FIBCs (big bag), 1.000 lit.

CAUTION Strong oxidizing agents such as nitric acid can react violently with ion exchange resins and cause explosive type reactions. Before using strong oxidants, consult sources knowledgeable in the handling of these materials

